Some issues about outlier detection in rough set theory
نویسندگان
چکیده
‘‘One person’s noise is another person’s signal” (Knorr, E., Ng, R. (1998). Algorithms for mining distancebased outliers in large datasets. In Proceedings of the 24th VLDB conference, New York (pp. 392–403)). In recent years, much attention has been given to the problem of outlier detection, whose aim is to detect outliers – objects which behave in an unexpected way or have abnormal properties. Detecting such outliers is important for many applications such as criminal activities in electronic commerce, computer intrusion attacks, terrorist threats, agricultural pest infestations, etc. And outlier detection is critically important in the information-based society. In this paper, we discuss some issues about outlier detection in rough set theory which emerged about 20 years ago, and is nowadays a rapidly developing branch of artificial intelligence and soft computing. First, we propose a novel definition of outliers in information systems of rough set theory – sequence-based outliers. An algorithm to find such outliers in rough set theory is also given. The effectiveness of sequence-based method for outlier detection is demonstrated on two publicly available databases. Second, we introduce traditional distance-based outlier detection to rough set theory and discuss the definitions of distance metrics for distance-based outlier detection in
منابع مشابه
A Novel Approach for Outlier Detection using Rough Entropy
Outlier detection is an important task in data mining and its applications. It is defined as a data point which is very much different from the rest of the data based on some measures. Such a data often contains useful information on abnormal behavior of the system described by patterns. In this paper, a novel method for outlier detection is proposed among inconsistent dataset. This method expl...
متن کاملFinding Anomaly With Fuzzy C-means ANN Using Semi-Supervised Approach
The FC-ANN (Artificial Neural Network) is used to speed up the technique. The anomaly Outlier detection is primary in various data-mining applications. Outlier detection methods have been suggested for number of application such as, fraud detection, voting irregularity analysis, data cleansing, clinical trials, network intrusion, severe weather prediction, geographic information system, credit ...
متن کاملEvaluation of Rough Set Theory for Decision Making of rehabilitation Method for Concrete Pavement
In recent years a great number of advanced theoretical - empirical methods has been developed for design & modeling concrete pavements distress. But there is no reliable theoretical method to be use in evaluation of conerete pavements distresses and making a decision about repairing them. Only empirical methods is used for this reason. One of the most usual methods in evaluating concrete paveme...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملOutlier Detection Using Rough Set Theory
In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formally define the notions of exceptional set and minimal exceptional set. We then analyze some special...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009